Skip to contents

add_latent_territorial_threat() allows you to add estimates of latent, external territorial threat to a dyad-year, leader-year, or leader-dyad-year, or state-year data frame. The estimates come by way of Miller (2022).

Usage

add_latent_territorial_threat(data, keep)

Arguments

data

a data frame with appropriate peacesciencer attributes

slice

takes one of 'first' or 'last', determines behavior for when there is a change in a contiguity relationship in a given dyad in a given year. If 'first', the earlier contiguity relationship is recorded. If 'last', the latest contiguity relationship is recorded.

mry

logical, defaults to FALSE. If TRUE, the data carry forward the identity of the major powers to the most recently concluded calendar year. If FALSE, the panel honors the right bound of the data's temporal domain and creates NAs for observations past it.

Value

add_latent_territorial_threat() takes a data frame and adds estimates of latent, external territorial threat derived from a random item response model (as described by Miller (2022)).

Details

The data are stored in terrthreat in this package, which also communicates what the variables are and what they mean in the case of overlapping column names. Miller (2022) describes the random item response model in more detail.

The standard caveat applies that the data are fundamentally state-year (though derived from dyad-year analyses). Extensions to leader-level data sets should be understood as approximate. For example, it's reasonable to infer the territorial threat for Germany under Friedrich Ebert in 1918 would differ from what Wilhelm II would've experienced in the same year. However, the data would have no way of knowing that (as they are).

References

Miller, Steven V. 2022. "A Random Item Response Model of External Territorial Threat, 1816-2010" Journal of Global Security Studies 7(4): ogac012.

Author

Steven V. Miller

Examples


# \donttest{
# just call `library(tidyverse)` at the top of the your script
library(magrittr)

cow_ddy %>% add_latent_territorial_threat()
#> # A tibble: 2,214,930 × 19
#>    ccode1 ccode2  year lterrthreat1    sd1  lwr1  upr1 m_lterrthreat1  m_sd1
#>     <dbl>  <dbl> <dbl>        <dbl>  <dbl> <dbl> <dbl>          <dbl>  <dbl>
#>  1      2     20  1920        0.679 0.0591 0.585 0.775          0.661 0.0707
#>  2      2     20  1921        0.504 0.0606 0.403 0.600          0.456 0.0677
#>  3      2     20  1922        0.744 0.0603 0.651 0.849          0.725 0.0657
#>  4      2     20  1923        0.762 0.0593 0.665 0.856          0.737 0.0674
#>  5      2     20  1924        0.739 0.0581 0.648 0.836          0.723 0.0650
#>  6      2     20  1925        0.650 0.0593 0.556 0.747          0.626 0.0682
#>  7      2     20  1926        0.699 0.0589 0.602 0.797          0.643 0.0653
#>  8      2     20  1927        0.483 0.0598 0.387 0.584          0.433 0.0687
#>  9      2     20  1928        0.483 0.0572 0.392 0.580          0.431 0.0643
#> 10      2     20  1929        0.460 0.0578 0.368 0.555          0.419 0.0658
#> # ℹ 2,214,920 more rows
#> # ℹ 10 more variables: m_lwr1 <dbl>, m_upr1 <dbl>, lterrthreat2 <dbl>,
#> #   sd2 <dbl>, lwr2 <dbl>, upr2 <dbl>, m_lterrthreat2 <dbl>, m_sd2 <dbl>,
#> #   m_lwr2 <dbl>, m_upr2 <dbl>

create_stateyears() %>% add_latent_territorial_threat()
#> Joining with `by = join_by(ccode, year)`
#> # A tibble: 17,511 × 11
#>    ccode cw_name       year lterrthreat    sd      lwr   upr m_lterrthreat  m_sd
#>    <dbl> <chr>        <dbl>       <dbl> <dbl>    <dbl> <dbl>         <dbl> <dbl>
#>  1     2 United Stat…  1816       0.268 0.119  0.0918  0.466            NA    NA
#>  2     2 United Stat…  1817       0.190 0.114  0.00330 0.378            NA    NA
#>  3     2 United Stat…  1818       0.266 0.117  0.0717  0.448            NA    NA
#>  4     2 United Stat…  1819       0.192 0.117  0.00393 0.381            NA    NA
#>  5     2 United Stat…  1820       0.150 0.122 -0.0550  0.356            NA    NA
#>  6     2 United Stat…  1821       0.146 0.121 -0.0601  0.348            NA    NA
#>  7     2 United Stat…  1822       0.149 0.119 -0.0489  0.344            NA    NA
#>  8     2 United Stat…  1823       0.146 0.119 -0.0566  0.334            NA    NA
#>  9     2 United Stat…  1824       0.137 0.117 -0.0506  0.331            NA    NA
#> 10     2 United Stat…  1825       0.132 0.118 -0.0645  0.334            NA    NA
#> # ℹ 17,501 more rows
#> # ℹ 2 more variables: m_lwr <dbl>, m_upr <dbl>
# }