Skip to contents

add_igos() allows you to add information from the Correlates of War International Governmental Organizations data to dyad-year or state-year data, matching on Correlates of War system codes.

Usage

add_igos(data)

Arguments

data

a dyad-year data frame (either "directed" or "non-directed") or a state-year data frame.

Value

add_igos() takes a dyad-year data frame or state-year data frame and adds information available from the Correlates of War International Governmental Organizations data. If the data are dyad-year, the function returns the original data with just one additional column for the total number of mutual IGOs for which both members of the dyad are full members. If the data are state-year, the function returns the original data with four additional columns. These are the number of IGOs for which the state is a full member, the number of IGOs for which the state is an associate member, the number of IGOs for which the state is an observer, and the number of IGOs for which the state is involved in any way (i.e. the sum of the other three columns).

Details

The function leans on attributes of the data that are provided by the create_dyadyear() or create_stateyear() function. Make sure that function (or data created by that function) appear at the top of the proverbial pipe.

References

Pevehouse, Jon C.W., Timothy Nordstron, Roseanne W McManus, and Anne Spencer Jamison. 2020. "Tracking Organizations in the World: The Correlates of War IGO Version 3.0 datasets." Journal of Peace Research 57(3): 492-503.

Wallace, Michael, and J. David Singer. 1970. "International Governmental Organization in the Global System, 1815-1964." International Organization 24: 239-87.

Author

Steven V. Miller

Examples


# \donttest{

# just call library(tidyverse) at the top of the pipe
library(magrittr)

cow_ddy %>% add_igos()
#> Joining, by = c("ccode1", "ccode2", "year")
#> # A tibble: 2,101,440 × 4
#>    ccode1 ccode2  year dyadigos
#>     <dbl>  <dbl> <dbl>    <dbl>
#>  1      2     20  1920        7
#>  2      2     20  1921        8
#>  3      2     20  1922        8
#>  4      2     20  1923        7
#>  5      2     20  1924        7
#>  6      2     20  1925        8
#>  7      2     20  1926        8
#>  8      2     20  1927        8
#>  9      2     20  1928        8
#> 10      2     20  1929        8
#> # … with 2,101,430 more rows

create_stateyears() %>% add_igos()
#> Joining, by = c("ccode", "year")
#> # A tibble: 16,926 × 7
#>    ccode statenme                  year sum_igo_full sum_igo_associa… sum_igo_observer
#>    <dbl> <chr>                    <dbl>        <dbl>            <dbl>            <dbl>
#>  1     2 United States of America  1816            0                0                0
#>  2     2 United States of America  1817            0                0                0
#>  3     2 United States of America  1818            0                0                0
#>  4     2 United States of America  1819            0                0                0
#>  5     2 United States of America  1820            0                0                0
#>  6     2 United States of America  1821            0                0                0
#>  7     2 United States of America  1822            0                0                0
#>  8     2 United States of America  1823            0                0                0
#>  9     2 United States of America  1824            0                0                0
#> 10     2 United States of America  1825            0                0                0
#> # … with 16,916 more rows, and 1 more variable: sum_igo_anytype <dbl>
# }