{peacesciencer}: An R Package for Quantitative Peace Science
Research®

STEVEN V. MILLER, Stockholm University

This article introduces {peacesciencer}, an R package that contains a litany of tools for creating data of widespread
interest to the peace science community. The package is cross-platform, assuming only a somewhat recent installation
of the R programming language with some of the enhanced functionality of the broadly popular {tidvyerse} packages.
Peace science researchers can use this package to greatly reduce the time needed to perfectly recreate common types of
data from scratch and to merge in ubiquitous indicators included in almost every analysis (e.g. democracy data, contiguity
data). The software is freely available on CRAN and maintains an active website documenting its features at http://svmill
er.com/peacesciencer.

Keywords: software, statistical analysis, peace science, reproducibility

Introduction

This manuscript tackles a recurring problem for researchers in the peace science community. True research
reproducibility is best achieved creating data from scratch, though no published guide exists that informs re-
searchers how to do this on their own. Instead, researchers may end up reusing old code generated in past
studies, leaving them to spend time and energy adjusting the sample of states, the temporal domain, and do-
ing whatever additional troubleshooting may arise from this practice. Researchers may additionally spend too
much time reproducing old code for standard information that goes into any dyadic or monadic analysis—like
contiguity relationships and democracy—and have to do additional troubleshooting for how these various data
sources treat missing data or treat state codes in a manner inconsistent with the more accessible Correlates of
War or Gleditsch-Ward state codes. This is all compounded by changes in technology that treat the creation
of the data and the analysis of data as a continuous process in which the contemporary quantitative political
scientist is increasingly becoming a computer programmer as well. Graduate students and other beginners in
the field face unique challenges associated with these developments. Students just learning peace science must
learn how scholarship informs data in peace science and how data inform scholarship at the same time they are
needing to learn quantitative methods in a chosen software package.

{peacesciencer} addresses these problems. Built around the free and open source R programming lan-
guage, {peacesciencer} contains a suite of data and functions for creating data of interest to researchers.
Researchers can use {peacesciencer} to create dyad-year, leader-year, leader-dyad-year, and state-year data
(among some others) from scratch. Afterward, they can add a variety of standard information (e.g. conti-
guity, alliances, major power status, GDP per capita estimates, capability estimates, and more) to these data
with a simple command. This is a considerable time-saver since, in the absence of it, researchers would have
to more meticulously code and transform the raw data to conform to the kind of data they want. {peace-
sciencer} comes with some data innovations as well, including a comprehensive data set on democracy by
year, an original data set on capitals and capital transitions, and a function to create peace years between
ongoing conflicts. All are done with the maximum possible transparency. The project is available for pub-
lic view on Github (https://github.com/svmiller/peacesciencer/). The data-raw directory on the project’s
Github contains information and comments about how every data set was created. The function manuals

*Replication files are available on the author’s Github account (https://github.com/svmiller/peacesciencer). Current version:
March 03, 2022; Corresponding author: steven.v.miller@gmail.com.

http://svmiller.com/peacesciencer
http://svmiller.com/peacesciencer
https://github.com/svmiller/peacesciencer/
https://github.com/svmiller/peacesciencer
mailto:steven.v.miller@gmail.com

(http://svmiller.com/peacesciencer/reference) contain additional comments about what each function returns
and, in appropriate cases, why it is doing what it is doing. Thus, {peacesciencer} not only assists a peace
scientist with their research, but it does so in a manner that best conforms to the Data Access and Research
Transparency Initiative (DA-RT) initiative across all political science.

This data feature proceeds in the following fashion. The next section expands what need this package fills for
peace scientists. Afterward, it provides an overview of whatisincluded in {peacesciencer} to help researchers
more quickly conduct the kind of quantitative research they want. Thereafter, it provides a tutorial on how to
install and best use {peacesciencer} in the R programming language. A more comprehensive tutorial follows,
showing how {peacesciencer} already has a suite of data and functions that can allow for effective replications
of a “dangerous dyads” type analysis (Bremer, 1992), standard state-year analyses of civil conflict onset (e.g.
Fearon & Laitin, 2003), and even leader-year analyses of inter-state dispute initiation (e.g. Horowitz & Stam,
2014). This feature concludes with a comparison of {peacesciencer} with other alternatives and a discussion
of how {peacesciencer} can inform more reasoned design decisions for researchers in peace science.

Why {peacesciencer}?

{peacesciencer} is motivated by the following observations and ideals that led to its creation. For one, re-
searchers invest too much time in the construction of a data set that faithfully captures the unit of analysis.
Assume a researcher wants an original data set on all directed dyad-years for Correlates of War states for an
analysis of inter-state conflict. How might one do that? The answer has never been immediately obvious. No
published guide exists that shows a researcher how to create these data themselves from scratch, which is one
reason why software bundles like EUGene and NewGene are attractive to researchers who primarily care about
the substance of their research question. After all, EUGene’s main value—if not its primary impetus—was allow-
ing researchers to create data sets for replication of previous studies, producing a host of data types (e.g. dyad-
year, state-year, dispute-year) along the way that users can amend as they saw fit. {peacesciencer} is primarily
born from this question about how to create these data from scratch. The underlying code that produces these
data types is available online and {peacesciencer} converts these lines of code into simple functions for the
ease of the researcher.

Second, researchers also invest too much time in retracing steps for peace science analyses for new projects.
Assume a researcher finished a state-year analysis on the correlates of civil conflict onset a few years ago and
wants to start a new project that analyzes the same outcome from a different angle (or perhaps using newer data).
Under these conditions, a researcher will have to find where they stored that replication code and copy-paste
it into a new directory for the new project. They may then have to change the name of some files, change some
code to account for potentially new column names in the newer data, and troubleshoot instances where their
old code does not perform as it once did. At its worst, this process may lead to some errors by the researcher. At
best, this is tedium that spends the researcher’s time they would rather invest in analyzing the data. The lion’s
share of {peacesciencer}’s functionality is both creating the units of analysis for the researcher and merging
in different forms of data in wide use in the peace science community so that the researcher can spend less of
their time on tedium.

Third, the creation of the data and the analysis of the data are increasingly becoming one continuous process.
Not too long ago, it used to be the case that researchers had to download a data set, or create one from scratch
(possibly in a spreadsheet or through a program like EUGene). After downloading or constructing the data,
the researcher then opened a specialty program for statistical analysis (e.g. SAS, SPSS, Stata) to recode raw data
into a form suitable for analysis before running a statistical model that regresses some outcome on a set of
covariates. Current research practices still resemble this process, but the steps between them are no longer as

http://svmiller.com/peacesciencer/reference

large as they were in the past. Software options exist that allow the researcher to load data, create data, clean
data, analyze data, and present the results of the analysis all within one program. {peacesciencer}, by itself,
does not do all these things, but it seamlessly connects the beginning of the research process to the end of the
research process without needing to leave the increasingly popular R programming language and RStudio (its
free-for-use integrated development environment [[DE)).

Fourth, it is increasingly the case that as the steps between creating data and analyzing data decrease in
size, the lines between them blur as well. In other words, to create data is to code data and the contemporary
quantitative political scientist is increasingly becoming a computer programmer (c.f. Bowers & Voors, 2016).
This is happening concurrent to innovations in programming languages for statistical analysis, especially the R
programming language that {peacesciencer} uses. There have been significant advances in add-on packages
that allow users to do things like get World Bank data from the internet (Arel-Bundock, 2021a) and even format
results from a statistical model for presentation in a way the reduces the probability of transcription errors to
almost zero (Arel-Bundock, 2021b). {peacesciencer} embraces this. This R package reduces the time required
to create peace science data for analysis and also informs the user about the code required to create the kind of
data the user wants.

Finally, the creation and presentation of data in peace science should be 100% robust and transparent, which
{peacesciencer} takes seriously in the following ways. The website for {peacesciencer} has several vi-
gnettes that describe its processes in some detail. These include how it provides reasonable estimates of democ-
racy that may not be available in the Polity data or the Varieties of Democracy data and how a researcher can
whittle dyadic dispute-years into true dyad-years through reasonable case exclusions. {peacesciencer} sub-
jects itself to a battery of tests before publishing updates, making sure new features do not create duplicate
entries in the original data (which is the surest sign of a botched merge). The project’s Github contains a pub-
licly available data-raw directory that shows how every data set included (and processed) in {peacesciencer}
was created. The function manuals included {peacesciencer} contain ample documentation that clarify what
each function is doing, what it returns to the user, and why it is doing it this way. Researchers can also use
the project’s Github to point out bugs, ask for further clarification, and propose additions. {peacesciencer}
takes seriously the Data Access and Research Transparency Initiative (DA-RT) initiative across all political sci-
ence and endeavors for maximum transparency, leveraging open source and version control software to inform
users of what data it uses and how it uses the data.

What is Included in {peacesciencer}

{peacesciencer} comes with a fully developed suite of built-in functions for generating some of the most
widespread forms of peace science data and populating the data with important variables that recur in many
quantitative analyses. The core functionality of {peacesciencer} reduces to two broad categories of functions.
These categories are functions that create the base data of interest to a researcher and functions, called after the
base data are created, that add variables of interest to the data frame or subset the base data to a handful of rows
that the researcher deems appropriate for analysis.! Table 1 and Table 2 list these core functions as of version
1.0, the version of this package slated for release alongside the manuscript.”

Table 1 lists functions that create base data frames for a researcher starting an original project. They serve

'In both cases, SQL-like “joins”—especially the left (outer) join—are the primary workhorse in these functions. A vignette on the
package website, included in the appendix, explains these various joins, why they are used, and what issues may arise from them.

2{peacesciencer} also has miscellaneous “helper” functions that are not belabored in this manuscript. These include functions
that allow the user to use {peacesciencer} functions with data created outside the package (declare_attributes()), download ex-
ternal data for quicker use of other functions (download_extdata()), and functions that communicate suggested citations (ps_cite()),
among a few other functions. See the package’s website for more information (http://svmiller.com/peacesciencer).

http://svmiller.com/peacesciencer

as functions that communicate the units of analysis supported in this package and that the package is capable of
generating for an interested user. For example, create_stateyears() will generate the full universe of state-
years from the Correlates of War (Correlates of War, 2011: v. 2016) or Gleditsch-Ward (Gleditsch & Ward, 1999:
v. 2017) system, encompassing all state-years to the most recently concluded calendar year, depending on the
arguments supplied to the user in the function. create_leaderyears() will generate the full universe of leader-
years from the Archigos leader data (Goemans, Gleditsch & Chiozza, 2009: v. 4.1), optionally standardizing
leader-years to the Gleditsch-Ward or Correlates of War state system data. As of version 1.0, {peacesciencer}
is capable of creating full dyad-year data, leader-day data, leader-dyad-year data, leader-year data, state-day
data, and state-year data.’ A vignette on the package’s website shows how users can create other forms of data
from these functions as well (e.g. dyadic-dispute-year, leader-months, state-quarters).

Table 1: Functions that Create Base Data

Function Description

create_dyadyears() Create dyad-years from state system membership data
create_leaderdays() Create leader-day data from Archigos
create_leaderdyadyears() Create leader-dyad-years data from Archigos
create_leaderyears() Create leader-years data from Archigos
create_statedays() Create state-days from state system membership data
create_stateyears() Create state-years from state system membership data

Table 2 lists the main functions in {peacesciencer} that add information or subset the number of rows
of the data to just those of interest to the user, describing these functions and listing whether they are applica-
ble to dyad-year (D), leader-year (L), leader-dyad-year (LD), state-year (S) data or specialty functions applicable
to just the dyadic conflict data (C).* All these functions use raw or pre-processed data included in the pack-
age. For example, add_gml_mids() uses a dyadic dispute-year version of the MID data offered by Gibler et
al. (2016: v. 2.2.1) and merges in information about whether there was an ongoing MID or MID onset in a
dyad-year, leader-year, leader-dyad-year, or state-year. {peacesciencer} also has some data innovations in-
cluded in these functions. For example, add_capital_distance() calculates distance between state capitals in
kilometers using the Vincenty method (i.e. “as the crow flies”) based on an original data set of state capitals that
accounts for instances when capitals moved (e.g. Brazil in 1960, Burundi in 2018). add_democracy() does more
than just add Polity data to a data set. The data underpinning the function feature an innovation in democracy
data, providing reasonable estimates of democracy using the Marquez (2016) method of extending the Unified
Democracy Scores (UDS) data (Pemstein, Meserve & Melton, 2010) in addition to Polity estimates (Marshall,
Gurr & Jaggers, 2017: v. 2017) and V-Dem estimates (Coppedge et al., 2020: v. 10).”

Table 2: Functions that Add Data

Function Type Description

3Leader-dyad-year data are too time-consuming to calculate each time and too size-prohibitive to include in the package. These
data can be downloaded through download_extdata() for much easier use.

“The “whittle” (wc_) class of functions is a suite of functions that whittle dyadic dispute-years to true dyad-year data. They are
effectively used in add_cow_mids() and add_gml_mids() for dyad-year data, but are offered here to allow users to employ their own
case exclusion rules to create their own dyad-year conflict data. A vignette on {peacesciencer}’s website explains these case exclusion
rules in some detail.

S{peacesciencer} comes with a vignette that explains just how much unnecessary missingness pervades data on democracy in the
absence of an innovation like this, and how this missingness might adversely affect inferences of inter-state or intra-state conflict.

add_archigos()
add_atop_alliance()

add_capital_distance()
add_ccode_to_gw()
add_contiguity()

add_cow_alliance()
add_cow_majors()
add_cow_mids()
add_cow_trade()
add_cow_wars()

add_creg_fractionalization()

add_democracy()
add_fpsim()

add_gml_mids()

add_gwcode_to_cow()
add_igos()

add_lead()
add_Tlwuf()

add_minimum_distance()
add_nmc()

add_peace_years()

add_rugged_terrain()
add_sdp_gdp()

add_spells()
add_strategic_rivalries()

add_ucdp_acd()

add_ucdp_onsets
filter_prd()

wc_duration()
wc_fatality()
wc_hostility()
wc_jds()
wc_onsets()

wc_recip()

D,S
D,LD
D, L LD,S
D, L, LD, S
D, L, LD, S
D,LD
D, L, LD, S
D
D, L, LD, S
D, S
D,L,LD,S

D, L LD,S
D,LD

D, L LD,S

D, L LD,S
b,S

L, LD
L, LD

D,L,LD,S
D,L,LD,S

Db, S

D,L,LD,S
D,L,LD, S

D, L LD,S

b,S
S

D,LD

Add Archigos political leader information to a data
frame

Add Alliance Treaty Obligations and Provisions
(ATOP) alliance data to a data frame

Add capital-to-capital distance to a data frame
Match CoW state codes to G-W state codes

Add CoW direct contiguity information to a data
frame

Add CoW alliance data to a data frame

Add CoW major power information to a data frame
Add CoW-MID data to a dyad-year data frame
Add CoW trade data to a data frame

Add CoW war data to a dyad-year or state-year
data frame

Add fractionalization/polarization estimates from
CREG to a data frame

Add democracy information to a data frame

Add dyadic foreign policy similarity measures to a
data frame

Add Gibler-Miller-Little (GML) MID data to a data
frame

Match G-W state codes to CoW state codes

Add CoW intergovernmental organizations (IGO)
data to a data frame

Add leader experience/attributes (LEAD) to data
Add leader willingness to use force estimates to
data

Add minimum distance data to data frame

Add Correlates of War National Military
Capabilities data

Add ’peace years’ to dyad-year/state-year conflict
data

Add rugged terrain information to a data frame
Add (surplus, gross) domestic product data to a
data frame

Add duration ’spells’ to a data frame

Add strategic rivalry information to a data frame
Add Uppsala Conflict Data Program (UCDP)
Armed Conflict Data to state-year data frame

Add UCDP onsets to state-year data

Filter dyad-year data to just politically relevant
dyads

Whittle Duplicate Conflict-Years by (Minimum or
Maximum) Conflict Duration

Whittle Duplicate Conflict-Years by Highest
Fatality

Whittle Duplicate Conflict-Years by Highest
Hostility

Whittle Duplicate Conflict-Years by Just Dropping
Something

Whittle Uniqute Conflict Onset-Years from
Conflict-Year Data

Whittle Duplicate Conflict-Years by Conflict
Reciprocation

wc_stmon() C Whittle Duplicate Conflict-Years by Lowest Start
Month

{peacesciencer}’s coverage focuses mostly on data that are released as standalone data sets for download,
especially those in the Correlates of War or Gleditsch-Ward ecosystem of data. Data that can be obtained from
a stable advanced programming interface—like the World Bank, for example—can be obtained through those
other means (e.g. Arel-Bundock, 2021a). Its coverage will assuredly expand with new additions of interest to
the peace science community, though the package already offers a lot to meet researcher needs.°

How to Install {peacesciencer}

{peacesciencer} is a package for the R programming language. This assumes at least some familiarity with
the R programming language. Users should have at least version 3.5 of R, which should not be an issue since the
most recent version—as of writing—is 4.1.3. {peacesciencer} is designed to be as user-friendly as possible.
Those proficient in R, those just learning R, and those with no experience in R should be able to pick up its use
fairly quickly.

{peacesciencer}’s functions work out of the box, though users should find their experience augmented
by two additional downloads. First, RStudio offers an IDE that serves as a user-friendly graphical user interface
(GUI) over what is, at its core, a programming language with a command-line interface. RStudio’s design will
make it much easier for users to experiment with {peacesciencer}’s functionality and read its documenta-
tion to assist them with the use of these functions. The second additional download is {tidyverse}, itself a
suite of packages that share a common form and design (Wickham et al,, 2019). {peacesciencer} functions
make considerable use of the component packages of {tidyverse}, and {peacesciencer} can work without
it, but installing and loading {tidyverse} will allow the researcher to make quicker use of {peacesciencer}’s
functionality. A user can open an R session by way of RStudio and install both packages as follows.”

Install the packages for use
install.packages(c("tidyverse", "peacesciencer"))

R packages once installed need to be loaded with every R session (i.e. every time the user opens RStudio).
The user can load both with the library() function in R.

Load the packages for use
library(tidyverse)
library(peacesciencer)

Thereafter, a researcher can start using {peacesciencer} to create the kind of data they need.

A Tutorial on How to Use {peacesciencer}

[encourage users who are using {peacesciencer} for the first time, especially those who are learning R for
the first time because of their interest in this package, to approach {peacesciencer} with an idea of the kind
of data they want to create for the sake of a project. The core functionality of {peacesciencer} begins with

The version of {peacesciencer} slated for release includes the most up-to-date-possible versions of data sets referenced in this
manuscript. One helper function, ps_version(), will inform the user about the versions of the data included in the installed package.
{peacesciencer} promises prompt package updates as new versions become available.

7R users will recognize that hash signs (#) allow for commenting code. Users new to R should understand its use here is primarily
for exposition of what the code snippets in this manuscript are doing. In subsequent code snippets, #> will indicate console output the
user can expect from these functions.

the creation of a data frame, which can then be populated with various indicators of interest. No matter, the
suggested use of {peacesciencer} begins with the creation of a data frame. To start, assume a new user without
much familiarity with the R programming language installed RStudio, {tidyverse}, and {peacesciencer}
with the idea of using {peacesciencer} to help them start a new research project that seeks to explain civil
conflict onset across state-years. Toward that end, they have identified their unit of analysis is state-year and
can be created with the create_stateyears(). To get started, | encourage entering the following command
in the console in RStudio.

See documentation for create_stateyears() function.
?create_stateyears()

This will open a documentation file for this function, which is itself quite verbose and informative for the
user about what the function is doing. In this case, the documentation file will show there are three arguments
in this function, each with built-in defaults. This function will allow the user to choose a state system for which
they want state-years (system, which accepts either “cow” or “gw” for Correlates of War [CoW] state system data
or Gleditsch-Ward [G-W] state system data and defaults to “cow”), whether they want to extend the state system
to the most recently concluded calendar year (mry, which defaults to TRUE), and whether they may want to
additionally subset the years to a more narrow temporal domain they may already have in mind (subset_years,
which defaults to no subset of the data, returning all possible state-years). If the user simply ran the function
with no overrides, the function would return all Correlates of War state-years from 1816 to the most recent
year (2021, as of writing).

Create all CoW state-years from 1816 to most recently concluded calendar year.
create_stateyears()
#> # A tibble: 16,926 x 3

#> ccode statenme year
#> <dbl> <chr> <int>
#> 1 2 United States of America 1816
#> 2 2 United States of America 1817
#> 3 2 United States of America 1818
#> 4 2 United States of America 1819
#> 5 2 United States of America 1820
#> 6 2 United States of America 1821
#> 7 2 United States of America 1822
#> 8 2 United States of America 1823
#> 9 2 United States of America 1824
#> 10 2 United States of America 1825
#> # ... with 16,916 more rows

A user who approaches {peacesciencer} with a project in mind will see they can better tailor this function
to what they want. Their interest in a state-year analysis of civil conflict will likely gravitate them toward the
Gleditsch-Ward state system data, since that is the state system that serves as the basis of the Uppsala Conflict
Data Program (UCDP) armed conflict data. They will also know they have no use for pre-1946 observations
since civil conflict data typically have coverage only from 1946 forward. Thus, the user can supply some addi-
tional arguments to tailor the creation of data to just what they want (here: all Gleditsch-Ward state-years from
1946 to 2019).

Create all G-W state years from 1946 to 2019.

create_stateyears(system = 'gw', subset years = c(1946:2019))
#> # A tibble: 10,490 x 3

#> gwcode statename year
#> <dbl> <chr> <int>
#> 1 2 United States of America 1946
#> 2 2 United States of America 1947
#> 3 2 United States of America 1948
#> 4 2 United States of America 1949
#> 5 2 United States of America 1950
#> 6 2 United States of America 1951
#> 7 2 United States of America 1952
#> 8 2 United States of America 1953
#> 9 2 United States of America 1954
#> 10 2 United States of America 1955
#> # ... with 10,480 more rows

Another reader may be interested in using {peacesciencer} for a research project using a leader-year unit
of analysis. These data can be created with create_leaderyears(). Users can read more about what this
function is doing by consulting the documentation file in R with the following command.

See documentation for create_leaderyears() function.
?create_leaderyears()

This function has three arguments denoting the leader system to inform the creation of the leader-year data
(i.e. Archigos) and two other arguments: standardize and subset_years. The standardize argument, which
when it defaults to “none”, returns all leader-years as presented in the raw Archigos data. Archigos’ leader
data are nominally denominated in the Gleditsch-Ward state system data, if not necessarily Gleditsch-Ward
state system dates (e.g. Archigos often has leader entries prior to state system entry in a few cases). Thus, the
user can standardize leader-year data to Gleditsch-Ward state system dates of CoW state system dates. Finally,
the user can subset the leader-year data to a more narrow temporal domain that may interest them with the
subset_years function. If a user is interested in creating a data set of leader-years for an analysis of inter-
state conflict initiation with the GML MID data, they can create the data that interests them with the following
function. Notice how create_leaderyears() also returns information about the leader too, like the leader’s
approximate age that year, their gender, and information about their tenure.

Create all leader-years for CoW states from 1870 to 2010.

create_leaderyears(standardize = "cow", subset years = c(1870:2010))
#> # A tibble: 15,074 x 7

#> obsid ccode leader gender year yrinoffice leaderage
#> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 USA-1869 2 Grant M 1870 2 48
#> 2 USA-1869 2 Grant M 1871 3 49
#> 3 USA-1869 2 Grant M 1872 4 50
#> 4 USA-1869 2 Grant M 1873 5 51
#> 5 USA-1869 2 Grant M 1874 6 52
#> 6 USA-1869 2 Grant M 1875 7 53
#> 7 USA-1869 2 Grant M 1876 8 54

#> 8 USA-1869 2 Grant M 1877 9 55

#> 9 USA-1877 2 Hayes M 1877 1 55
#> 10 USA-1877 2 Hayes M 1878 2 56
#> # ... with 15,064 more rows

Researchers using {peacesciencer} to create data for their research project should start with one of these
“create” functions. Whether state-year, dyad-year, or a leader-level analysis, these functions will create the full
universe of cases of interest to a researcher.

Creating Dyad-Year Data and Adding to Dyad-Year Data in {peacesciencer}

After creating the base data of interest to their project, researchers can begin to add information they want
with the suite of functions outlined in Table 2. For example, a researcher interested in a dyad-year analysis of
inter-state disputes can create a non-directed dyad-year data set from 1816 to 2010 in {peacesciencer} with
the create_dyadyears() function, one of the aforementioned “create” function. The following would create
the base data of interest to the user (i.e. all non-directed dyad-years from 1816 to 2010).

Create all non-directed dyad-years from 1816 to 2010.

create_dyadyears(FALSE, c(1816:2010))
#> # A tibble: 842,655 x 3

#> ccodel ccode2 year

#> <dbl> <dbl> <int>

#> 1 2 20 1920

#> 2 2 20 1921

#> 3 2 20 1922

#> 4 2 20 1923

#> 5 2 20 1924

#> 6 2 20 1925

#> 7 2 20 1926

#> 8 2 20 1927

#> 9 2 20 1928

#> 10 2 20 1929

#> # ... with 842,645 more rows

Adding information to this data frame is a simple matter of joining a series of functions together in a “pipe.”
The “pipe”—represented as %>% in the code below—is an operator built into {tidyverse} that allows users to
pass forward expressions or functions. These pipes are common in the programming world and, as the code
below will show, have the benefit of changing code in a way that is more intuitive and easier to both read and
write for the user. While these functions can be modified to work without {tidyverse} installed and loaded
into the session, the user will find their experience with {peacesciencer} is only improved by this important
package.

For example, assume the researcher wants just all politically relevant, non-directed dyad-years, where po-
litical relevance is traditionally understood as a dyadic relationship involving some form of a contiguity rela-
tionship or a major power (Lemke & Reed, 2001). create_dyadyears(directed = FALSE, subset_years
= ¢(1816:2010)) created the full universe of non-directed dyad-years from 1816 to 2010, though this full
universe includes “irrelevant” dyads like Nigeria-Mongolia and Estonia-Rwanda. Reducing the data to just po-
litically relevant dyads is simple in {peacesciencer} and {tidyverse}. Users first create the data they want
(here: create_dyadyears(directed = FALSE, subset_years = c(1816:2010))), follow it with the pipe op-

erator (%>%), and then add another function from {peacesciencer} (here: filter_prd(), which also quietly
executes add_contiguity() and add_cow_majors()).

create base data, and pipe (%>%) to next function
create_dyadyears(directed = FALSE, subset years = c(1816:2010)) %>%
subset data to politically relevant dyads (PRDs)
filter_prd()
#> # A tibble: 112,282 x 7

#> ccodel ccode2 vyear conttype cowmajl cowmaj2 prd
#> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 2 20 1920 1 1 0 1
#> 2 2 20 1921 1 1 0 1
#> 3 2 20 1922 1 1 0 1
#> 4 2 20 1923 1 1 0 1
#> 5 2 20 1924 1 1 0 1
#> 6 2 20 1925 1 1 0 1
#> 7 2 20 1926 1 1 0 1
#> 8 2 20 1927 1 1 0 1
#> 9 2 20 1928 1 1 0 1
#> 10 2 20 1929 1 1 0 1

#> # ... with 112,272 more rows

Here, the user has created all non-directed dyad-years from 1816 to 2010 and then subset the data to just
those with a major power or with some kind of contiguity relationship.

Users will find that the ease of the “pipe” will allow them greater agency in creating the full data set they
may want for an analysis. Indeed, the pipe has the effect of forming something analogous to a drop-down
menu, in which the user can “select” additional data/commands they may want simply by specifying the func-
tion in {peacesciencer} that does what they want. For example, a researcher can follow filter_prd()
with another pipe and communicate they want information about ongoing conflicts and conflict onsets from
the Gibler-Miller-Little (GML) dispute data set (Gibler, Miller & Little, 2016). Following filter_prd() with

add_gml_mids(keep = NULL) will add information about ongoing conflicts and onsets in a given dyad-year.®

create base data, and pipe (%>%) to next function
create_dyadyears(directed = FALSE, subset years = c(1816:2010)) %>%
subset data to politically relevant dyads (PRDs), pipe to next function
filter_prd() %>%
add conflict information from GML-MID data,
add_gml_mids(keep = NULL)
#> # A tibble: 112,282 x 9

#> ccodel ccode2 vyear conttype cowmajl cowmaj2 prd gmlmidonset gmlmidongoing
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 20 1920 1 1 0 1 0 0
2 2 20 1921 1 1 0 1 0 0
#> 3 2 20 1922 1 1 0 1 0 0
8keep = NULL in this context will focus the information returned to just the information about ongoing conflicts and onsets,

discarding potentially unwanted columns about things like Side A, hostility levels, and other information included in the data set. Type
?add_gml_mids() for more information.

10

#> 4 2 20 1923 1 1 0 1 0 0
#> 5 2 20 1924 1 1 0 1 0 0
#> 6 2 20 1925 1 1 0 1 0 0
#> 7 2 20 1926 1 1 0 1 0 0
#> 8 2 20 1927 1 1 0 1 0 0
#> 9 2 20 1928 1 1 0 1 0 0
#> 10 2 20 1929 1 1 0 1 0 0
#> # ... with 112,272 more rows

Users can also calculate peace-years for these conflicts with add_spells() by using the pipe to pass forward
the data set and applying the add_spells() function to it.”

create base data, and pipe (%>%) to next function
create_dyadyears(directed = FALSE, subset years = c(1816:2010)) %>%
subset data to politically relevant dyads (PRDs), pipe to next function
filter_prd() %>%
add conflict information from GML-MID data, pipe to next function
add_gml_mids(keep = NULL) %>%
add peace years ("spells")
add_spells()
#> # A tibble: 112,282 x 10

#> ccodel ccode2 vyear conttype cowmajl cowmaj2 prd gmlmidonset gmlmidongoing
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 20 1920 1 1 0 1 0 0
#> 2 2 20 1921 1 1 0 1 0 0
#> 3 2 20 1922 1 1 0 1 0 0
#> 4 2 20 1923 1 1 0 1 0 0
#> 5 2 20 1924 1 1 0 1 0 0
#> 6 2 20 1925 1 1 0 1 0 0
#> 7 2 20 1926 1 1 0 1 0 0
#> 8 2 20 1927 1 1 0 1 0 0
#> 9 2 20 1928 1 1 0 1 0 0
#> 10 2 20 1929 1 1 0 1 0 0
#> # ... with 112,272 more rows, and 1 more variable: gmlmidspell <dbl>

Researchers should see that {peacesciencer}’s functionality can scale up nicely from there. For example,
the following would round out the kind of information necessary to replicate Bremer’s (1992) famous “danger-
ous dyads” analysis by adding information about national material capabilities (e.g. the composite index of na-
tional capabilities [CINC]) for both states in the dyad (add_nmc()), estimates of democracy for both states in the
dyad (add_democracy()), information about alliance commitments in the dyad-year (add_cow_alliance(), by
way of Gibler (2009)), and finishing with information about estimated population size and (surplus, gross) do-
mestic product based on simulations reported by Anders, Fariss & Markowitz (2020). Whereas add_sdp_gdp()

add_spells() will only calculate the peace years—titled, in this case, gmlmidspell—and will leave the temporal dependence
adjustment to the taste of the researcher. Importantly, I do not recommend manually creating splines or square/cube terms because it
creates more problems in adjusting for temporal dependence in model predictions. In a regression formula in R, you can specify the
Carter & Signorino (2010) approach as ... + gmlmidspell + I(gmlmidspell”2) + I(gmlmidspell”3). The Beck, Katz & Tucker
(1998) cubic splines approachis ... + splines::bs(gmlmidspell, 4). This function includes the spell and three splines (hence the
4 in the command). Either approach makes for easier model predictions, given R’s functionality.

11

is the last command in the pipe-based workflow, the {peacesciencer} call ends by assigning to an object called
Data. This type of assignment is done with the “right hand” assignment operator (i.e. —).

create base data, and pipe (%>%) to next function
create_dyadyears(directed = FALSE, subset years = c(1816:2010)) %>%
subset data to politically relevant dyads (PRDs), pipe to next function
filter_prd() %>%
add conflict information from GML-MID data, pipe to next function
add_gml_mids(keep = NULL) %>%
add peace years ("spells"), pipe to next function
add_spells() %>%
add capabilities data, pipe to next function
add_nmc() %>%
add some estimates about democracy for each state, pipe to next function
add_democracy() %>%
add information about alliance commitments in dyad-year
add_cow_alliance() %>%
finish with information about population and GDP/SDP
and then assign to object, called, minimally, 'Data’
add_sdp_gdp() — Data

Data

#> # A tibble: 112,282 x 42

#> ccodel ccode2 vyear conttype cowmajl cowmaj2 prd gmlmidonset gmlmidongoing
#> <dbl> <dbl> <dbl> <db1l> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 20 1920 1 1 0 1 0 0
#> 2 2 20 1921 1 1 0 1 0 0
#> 3 2 20 1922 1 1 0 1 0 0
#> 4 2 20 1923 1 1 0 1 0 0
#> 5 2 20 1924 1 1 0 1 0 0
#> 6 2 20 1925 1 1 0 1 0 0
#> 7 2 20 1926 1 1 0 1 0 0
#> 8 2 20 1927 1 1 0 1 0 0
#> 9 2 20 1928 1 1 0 1 0 0
#> 10 2 20 1929 1 1 0 1 0 0
#> with 112,272 more rows, and 33 more variables: gmlmidspell <dbl>,

#>
#>

#
milex1 <dbl>, milperl <dbl>, irstl <dbl>, pecl <dbl>, tpopl <dbl>,
#
#> # pec2 <dbl>, tpop2 <dbl>, upop2 <dbl>, cinc2 <dbl>, v2x_polyarchyl <dbl>,
#
#
#

upopl <dbl>, cincl <dbl>, milex2 <dbl>, milper2 <dbl>, irst2 <dbl>,

#> polity21 <dbl>, xm_qudsestl <dbl>, v2x_polyarchy2 <dbl>, polity22 <dbl>,
#> xm_qudsest2 <dbl>, cow_defense <dbl>, cow_neutral <dbl>, cow_nonagg <dbl>,

#> cow_entente <dbl>, wbgdp20llestl <dbl>, wbpopestl <dbl>, sdpestl <dbl>,

If the user wants to move these data into Stata for analysis, they can save it to their current working directory
with a command like haven::write_dta(Data, "my-data.dta") and import it into Stata when they are
done. No matter, {peacesciencer} has pre-processed, cleaned, recoded, and merged the desired data that
have greatly reduced the time and energy a researcher might otherwise spend doing something like hard-coding

12

Table 3: A "Dangerous Dyads” Analysis of Non-Directed Dyad-Years from {peacesciencer}

Model 1

Land Contiguity 1.062*
(0.057)

Dyadic CINC Proportion (Lower/Higher) 0.453*
(0.036)

CoW Major Power in Dyad 0.144*
(0.057)

Defense Pact —0.119*
(0.058)

Dyadic Democracy (Weak-Link) —0.493*
(0.052)
Dyadic GDP per Capita (Weak-Link) 0.293*
(0.051)

Dyadic Militarization (Minimum) 0.263*
(0.023)

t —0.146*
(0.005)

t"2 0.002*
(0.000)

t"3 0.000*
(0.000)

Intercept —3.045*%
(0.063)

Num.Obs. 103919

+p<0.1,*p<0.05

-9s in these data to be NA in the capabilities data. In this particular application, it has already created the main
data required for a replication of Bremer (1992). There is only some slight data work to create the desired
indicators for a statistical model of conflict onset, like a dummy variable for land-contiguity, the presence of a
major power in the dyad, and some “weak-link” indicators of militarization, relative power in the dyad, level of
democracy in the dyad (using the Marquez (2016) method for extending the Unified Democracy Scores [UDS]
data), and the GDP per capita in the dyad. Table 3 is a formatted version of the results of a logistic regression
model of conflict onset using these “dangerous dyads” indicators and temporal adjustment variables (f). Users
typically do not end their analysis here—often looking for new predictors of conflict onset with these covariates
in mind—but {peacesciencer} greatly reduces the time and energy researchers must invest into cleaning and
processing data for analysis.

Creating State-Year Data and Adding to State-Year Data in {peacesciencer}

{peacesciencer} is capable of generating data for replications of analyses at multiple levels beyond dyad-year.
Suppose a researcher wants to create a state-year data frame to conduct an analysis of civil conflict onset anal-
ogous to Fearon and Laitin’s (2003) well-cited analysis of civil conflict onset, but using UCDP conflict data and
the Gleditsch-Ward state system for creating the appropriate universe of state-years. The pipe-based workflow

13

will start with create_stateyears(system = 'gw', subset_years = c(1946:2019)), creating the full uni-
verse of Gleditsch-Ward state years and subsetting them to just 1946-2019 (because the UCDP data included
in {peacesciencer} include just the observations in that time frame). Next, we can use the add_ucdp_acd()
function to return information about ongoing UCDP conflicts and onsets for these states. add_ucdp_acd()
takes three arguments: type, issue, and only_wars. type is an optional argument for the type of armed con-
flicts for which the researcher wants information. Options include “extrasystemic”, “interstate”, “intrastate”, and
“II” (short for “internationalized intrastate”). If no type is specified, the function returns information about on-
going disputes and onsets for all states for all types of conflict. If the user wants information about multiple
types of conflict-say: intra-state wars and internationalized intra-state wars—they can specify that as a char-
acter vector (e.g. type = c("intrastate", "II")). issue is another optional argument for what issue types
of conflicts the user wants beyond the type of armed conflict. Options include “territory”, “government”, and
“both”. If no issue is specified, the function returns information for all conflicts regardless of the particular
issue. only_wars is an argument that subsets the data to just those with the intensity levels of “war” when
only_wars = TRUE. The argument defaults to FALSE, returning information about conflicts with at least 25
deaths in addition to the conflicts with more than 1,000 deaths. In this application, add_ucdp_acd(type =
"intrastate", only_wars = FALSE) returns state-year information about ongoing intra-state conflicts over
any issue and at either of UCDP’s severity thresholds.'’

Create a set of state-year data for a civil conflict analysis.
create_stateyears(gw', c(1946:2019)) %>%
add_ucdp_acd("intrastate", FALSE) %>%
add_spells() %>%
add_democracy() %>%
add_creg_fractionalization() %>%
add_sdp_gdp() %>%
add_rugged_terrain() — Data

Finally, we can add some covariates of interest to these data. add_spells() calculates peace spells between
ongoing conflicts in the data generated by add_ucdp_acd(). add_democracy() adds information about the
level of democracy in the year using three prominent data sets on democracy (Polity, V-Dem, and Marquez’
(2016) extension of Pemstein et al’s (2010) UDS data). add_creg_fractionalization() adds information
about the fractionalization and polarization of a state’s ethnic and religious groups from the Composition of
Religious and Ethnic Groups (CREG) Project at the University of Illinois. add_sdp_gdp() will add information
about a state’s estimated GDP, population, and GDP per capita from the Anders, Fariss & Markowitz (2020) sim-
ulations. Finally, add_rugged_terrain() provide two estimates of the ruggedness of a state’s terrain. The first
is the terrain ruggedness index calculated by Nunn & Puga (2012) and the second is the Gibler & Miller (2014)
extension of the natural logged percentage of the state that is mountainous (originally calculated by Fearon &
Laitin (2003)). At the end of the pipe, the data returned by {peacesciencer} is assigned to an object minimally
called Data.

{peacesciencer}’s tight integration with the {tidyverse} permits wide flexibility for the researcher. For
example, assume the researcher wants to discern the estimated effect of the same set of covariates on intra-state
conflicts at the threshold of war and those intra-state conflicts at or below the threshold of war. The first call
included all conflicts with at least 25 deaths, per the UCDP’s inclusion rules, and the peace years were calculated
for those as well. If the researcher wants a new set of conflicts with a new set of peace years, it would be a simple
matter of repeating the pipe-based workflow, but altering the argument in add_ucdp_acd() to be only_wars

9The function also returns some background information of interest to the researcher, including the maximum intensity observed
and the IDs associated with all ongoing conflicts in the state that year.

14

Table 4: A Civil Conflict Analysis of Gleditsch-Ward State-Years in {peacesciencer}

AIlUCDP Conflicts Wars Only

GDP per Capita (Lagged) —0.285* —0.343*
(0.110) 0.172)
Population Size (Lagged) 0.229* 0.272*
(0.067) (0.106)
Extended UDS (Lagged) 0.257 —0.085
(0.181) (0.270)
Extended UDS"2 (Lagged) —0.726* —0.761*
(0.211) (0.352)
% Mountainous Terrain (Logged) 0.055 0.342*
(0.067) (0.112)
Ethnic Fractionalization 0.442 0.333
(0.358) (0.554)
Religious Fractionalization —0.389 —0.281
(0.402) (0.593)
t —0.074+ —0.111*
(0.039) (0.056)
t"2 0.004* 0.005+
(0.002) (0.003)
t"3 0.000* 0.000+
(0.000) (0.000)
Intercept —5.098* —6.591*
(1.351) (2.084)
Num.Obs. 8192 8192

+p<0.1,*p <0.05

= TRUE. {peacesciencer} would then calculate the peace years for those (add_peace_years()). To avoid
confusion with the overlapping column names, the researcher can use some {tidyverse} verbs to rename
all those conflict variables to have a distinct prefix of war_ (i.e. rename_at(vars(ucdpongoing:ucdpspell),

~paste@("war_", .))) before finally joining these data into the master data frame (i.e. Lleft_join(Data, .)
— Data). Table 4 shows the fruits of the data {peacesciencer} generated after some post-processing and

lagging important variables.

Repeat the process, but for a new DV of just wars
create_stateyears(‘gw', c(1946:2019)) %>%
add_ucdp_acd("intrastate", TRUE) %>%
add_spells() %>%
rename_at(vars(ucdpongoing:ucdpspell), ~paste0("war_", .)) %>%
left_join(Data, .) — Data

15

Creating Leader-Year Data and Adding to Leader-Year Data in {peacesciencer}

{peacesciencer} also has support for newer levels of analysis in the peace science community, prominently
leader-levels of analysis. There has been considerable emphasis in peace science research to emphasize that
state leaders, not “states”, make foreign policy decisions that may lead to war. Understanding the attributes of
leaders themselves are critical to the core research questions of the community (Goemans, Gleditsch & Chiozza,
2009; Horowitz & Stam, 2014; Ellis, Horowitz & Stam, 2015) and {peacesciencer} wants to help researchers
toward that end.

Table 2 shows there are some dedicated functions for populating leader-level data with leader-specific in-
formation, in addition to adding state-year-level information (e.g. democracy, capabilities) to leader-level data.
Table 1 shows support for creating leader-level data that are standardized to either the CoW or G-W state sys-
tem data. Suppose a researcher wanted to create leader-year data, standardized to CoW system dates, for an
analysis of inter-state dispute initiation analogous to what Horowitz & Stam (2014) do. The user would first start
with creating the base data (create_leaderyears(standardize = "cow", subset_years=c(1875:2010))),
which also generates some leader attributes (e.g. estimated leader age, year in office, and leader gender). From
there, they would add information about leader conflict behavior in the year with add_gml_mids() and calcu-

' add_lead() willadd a battery of leader experience and at-

late peace-years with the add_spells() function.
tributes variables from data created by Ellis, Horowitz & Stam (2015), including whether the leader had military
experience, combat experience, was a rebel fighter, and many more. Finally, add_nmc() and add_democracy()

will add state-year estimates of national capabilities and democracy for assisting in making state-to-state com-
parisons, even for leader-level analyses. Some light recoding of the data created in {peacesciencer} and some
regression modeling reproduces the results presented in Table 5, itself an approximation of the kind of leader-

year analysis exemplified in Horowitz & Stam (2014).

Create a set of leader-year data for an analysis of conflict initiation.
create_leaderyears("cow", c(1875:2010)) %>%
add_gml_mids() %>%
add_spells() %>%
add_lead() %>%
add_nmc() %>%
add_democracy() — Data

""The documentation for add_gml_mids(), along with the data-raw directory on Github, provides ample explanation for how inter-
state conflicts in the GML conflict data are connected to specific leaders. Since inter-state dispute data can have missing days, connecting
leaders to dispute onsets involves some important archival research that is only possible because of the information collected by Gibler,
Miller & Little (2016) over 10 years of scholarship. The documentation also considers the multiple ways in which users can more flexibly
code the concept of “initiation” based on participant-level summaries. The default coding of initiation, based on this exhaustive archival
work, is to code a leader initiating a dispute if they were on Side A or joined the conflict at any point after the onset of the dispute. Users
can change this to focus on just Side A, or just originators on Side A. This is the init argument in add_gml_mids().

16

Table 5: A Leader-Year Analysis of Inter-State Dispute Initiation in {peacesciencer}

Model 1
Male Leader —0.752*
(0.206)
Leader Age 0.010*
(0.002)
Leader Tenure (in Years) 0.027*
(0.004)
Military Service (No Combat) 0.332*
(0.084)
Military Serivce (with Combat) 0.132
(0.090)
Previous Rebel Experience 0.287*
(0.069)
Prior War Win 0.033
(0.107)
Prior War Loss 0.090
(0.106)
Prior Rebel Win —0.136
(0.102)
Prior Rebel Loss 0.328*
(0.142)
Extended UDS Democracy Score —0.180*
(0.037)
CINC 11.858*
(0.626)
t —0.247*
(0.028)
t"2 0.010*
(0.004)
t*3 0.000+
(0.000)
Intercept —1.816*
(0.243)
Num.Obs. 13839

+p<0.1,*p<0.05

17

A Comparison with Other Approaches

{peacesciencer} is not the only software available to peace science researchers who want to reduce the time
and energy required to faithfully recreate data from scratch. Alternatives exist, some more inaccessible than
others. NewGene, for example, is a stand-alone software program for Microsoft Windows and Mac that can
create various types of data of interest to international relations scholars (Bennett, Poast & Stam, 2019). New-
Gene is itself the evolution of EUGene, which served conflict researchers well for over a decade (Bennett & Stam,
2000). Finally, peace scientists well-versed in Structured Query Language (SQL) could use one of several “join”
transformations to create dyad-year data from state system data, even if this might amount to a detour in the
peace scientist’s research agenda for this particular task.'” A comparison of {peacesciencer} with EUGene
and NewGene suggests the following benefits of the package while emphasizing areas where other options may
have some advantages.

EUGene is the clear inspiration for this package. Though its original impetus was the generation of expected
utility data for evaluating Bueno de Mesquita & Lalman (1992) (i.e. the “EU” in “EUGene”), the software became
quite popular for peace science scholars in the early 2000s for helping them start new projects from scratch with
important data already provided. {peacesciencer} covers all the same units of analysis that EUGene covers,
as of version 3.2.!* EUGene has more explicit support for dyadic dispute-year data whereas {peacesciencer}
treats dyadic dispute-year data as a derivation of dyad-year data, with respect to functions that populate base
data with additional information.'* {peacesciencer} may reflect more current research interests in the peace
science community. This is why there are leader-level data and support for the G-W (and UCDP) ecosystem of
data that EUGene does not have, but there is no function yet for things like calculating expected utility values.
Importantly, though, {peacesciencer} mimics the verbosity of EUGene’s user manual. EUGene’s user manual
was amply informative about what it was calculating and why it was doing what it was doing for some defaults.
Likewise, {peacesciencer}’s documentation strives to be as informative as possible as to what it is doing and
why it is doing what it is doing for some defaults. A scholar who remembers EUGene well will ideally think of
{peacesciencer} as the most faithful approximation of what that software did for the community at the time.
It has the added benefit of being agnostic to the researcher’s operating system, having greater flexibility of data
types supported, and better reflecting more current frontiers in the community. It does have the drawback of
requiring at least some level of comfort with the R programming language.

NewGene is the latest evolution of EUGene, at least as a stand-alone executable program for creating the
kind of data of interest to the peace science community. NewGene’s greatest strength, relative to EUGene and
even {peacesciencer}, is its support for k-adic data (c.f. Poast, 2010). k-adic levels of analysis are not yet
supported in {peacesciencer} and users interested in generating k-adic data should consider downloading
NewGene. No matter, {peacesciencer} has several superlatives in relation to NewGene. It supports leader-
year and leader-dyad-year data while NewGene does not. It offers support for the G-W (and UCDP) ecosystem
of data whereas NewGene does not and is mostly aimed for researchers interested in inter-state conflict. New-
Gene deviates a bit from EUGene by only indirectly asking users what kind of data they want (e.g. state-year,
dyad-year) and without providing too much detail about what it is doing and why it is doing what it is doing.
For example, NewGene only indirectly states the unit of analysis of the data to be generated near the top of its
interface by asking the user how many country columns they want. This is an indirect way of the user to get

12That said, {peacesciencer} makes ample use of SQL-like “joins” for the construction of base data and functions that merge data
into base data created in the package. A discussion of these joins appears as a vignette on the package’s website.

B3The latest version, as of writing, is v. 3.212 released in 2017. However, this is apparently a bug fix on string variables and that the
underlying functionality was still last updated in 2007 with the release of version 3.2.

For example, the “whittle” class of functions (i.e. wc_ in Table 2) are designed for dyadic dispute-year data also included in the
package while a helper function—declare_attributes()—can allow a user to treat other dyadic dispute-year data as dyad-year data
for the sake of using any of the other supported functions in Table 2.

18

data that are state-year, dyad-year, triad-year (etc.), which are then expanded and populated with data at various
levels. {peacesciencer}, much like EUGene, is more explicit, encouraging the user to be upfront about what
their unit of analysis is and what are the data that can be plausibly plugged into the data the user is creating.
{peacesciencer}, again, does expect at least some level of comfort with the R programming language, but
even this comes with greater ease of interpreting what is the unit of analysis and what are the primary spatial
and temporal units that serve as the basis of the data.

Conclusion

{peacesciencer} is already more than capable of creating the kind of data in high demand in peace science. It
can create dyad-year, leader-year, leader-dyad-year, and state-year data (among others). It is also generalizable
to the dispute data included in the package, allowing for merging into dispute-year data as well. This feature
showed how it can effectively approximate three types of analyses in wide use in the peace science community.
Surely researchers can and will add more information to these simple analyses after using {peacesciencer},
but the package already does a lot of the tedious work for researchers. It also does this in a maximally trans-
parent way that conforms well to the DA-RT initiative across all political science. This is not to say {peace-
sciencer} does everything, but {peacesciencer} can only evolve and expand on what it already does well.
This package can only evolve to meet new analytical demands for the peace science community. Users are free
to request new features as “issues” on the project’s Github.

Finally, a skeptical reader should not think that making the process as simple as possible necessarily facil-
itates poor decision-making by the user. In cases where it is evident what the user wants (e.g. an estimate of
the level of democracy in the state-year), {peacesciencer} does the necessary work to provide the user that
information. However, the package makes sure to leave important decision-making to the researcher. For
example, add_cow_alliance() returns information about various types of alliance pledges in the dyad-year—
should one exist—but leaves it to the researcher to say whether they want to define the presence of an alliance
to be just a defense pledge or any type of alliance pledge. add_contiguity() returns information about the
type of contiguity relationship in the dyad-year, but leaves it to the researcher whether they want to code a
contiguity variable as the presence of a mutual land border or some other type of contiguity relationship. The
documentation included in this package, and on the website, is replete with caveats about the underlying data
(e.g. the contiguity data are not ordinal and should not be treated as such), how and where data issues arise
(e.g. how CoW state system data differ from Gleditsch-Ward data and how one is coerced into the other), and
how researchers should consider optimally using its functionality (e.g. add_ucdp_acd() probably should not
lump all forms of conflict together (c.f. Gibler & Miller, Forthcoming)). {peacesciencer} does not endeavor
to make researchers lazy or sloppy, and it does not ultimately do this. Instead, {peacesciencer} encourages
well-reasoned design decisions by the user up front and reduces the tedium associated with starting quantitative
peace science research. It achieves this in a quick, robust, and transparent way.

19

References

Anders, Therese, Christopher] Fariss & Jonathan N Markowitz (2020) Bread before guns or butter: Introducing
surplus domestic product (SDP). International Studies Quarterly 64(2): 392-405.

Arel-Bundock, Vincent (2021b) Modelsummary: Summary Tables and Plots for Statistical Models and Data: Beau-
tiful, Customizable, and Publication-Ready (https://CRAN.R-project.org/package=modelsummary).

Arel-Bundock, Vincent (2021a) WDI: World Development Indicators and Other World Bank Data (https://CRAN
.R-project.org/package=WDI).

Barbieri, Katherine, Omar MG Keshk & Brian Pollins (2009) Trading data: Evaluating our assumptions and
coding rules. Conflict Management and Peace Science 26(5): 471-491.

Beck, Nathaniel, Jonathan N Katz & Richard Tucker (1998) Taking time seriously: Time-series-cross-section
analysis with a binary dependent variable. American Journal of Political Science 42(4): 1260-1288.

Bennett, DScott, Paul Poast & Allan C Stam (2019) NewGene: An introduction for users. Journal of Conflict
Resolution 63(6): 1579-1592.

Bennett, DScott & Allan Stam (2000) EUGene: A conceptual manual. International Interactions 26(2): 179-204.

Bowers, Jake & Maarten Voors (2016) How to improve your relationship with your future self. Revista de Ciencia
Politica 36(3): 829-848.

Bremer, Stuart A (1992) Dangerous dyads: Conditions affecting the likelihood of interstate war, 1816-1965.
Journal of Conflict Resolution 36(2): 309-341.

Bueno de Mesquita, Bruce & David Lalman (1992) War and Reason: Domestic and International Imperatives. Yale
University Press.

Carter, David B & Curtis S Signorino (2010) Back to the future: Modeling time dependence in binary data.
Political Analysis 18(3): 271-292.

Carter, Jeff & Charles E Smith (2020) A framework for measuring leaders’ willingness to use force. American
Political Science Review 114(4): 1352—-1358.

Coppedge, Michael, John Gerring, Carl Henrik Knutsen, Staffan I Lindberg, Jan Teorell, David Altman, Michael
Bernhard, MSteven Fish, Adam Glynn, Allen Hicken, Anna Luhrmann, Kyle L Marquardt, Kelly McMann,
Pamela Paxton, Daniel Pemstein, Brigitte Seim, Rachel Sigman, Svend-Erik Skaaning, Jeffrey Staton, Agnes
Cornell, Lisa Gastaldi, Haakon Gjerlow, Valeriya Mechkova, Johannes von Romer, Aksel Sundtrom, Eitan
Tzelgov, Luca Uberti, Yi-ting Wang, Tore Wig & Daniel Ziblatt (2020) V-dem codebook v10.

Correlates of War (2011) State system membership list, v2016 (http://correlatesofwar.org).

Ellis, Cali Mortenson, Michael C Horowitz & Allan C Stam (2015) Introducing the LEAD data set. International
Interactions 41(4): 718-741.

Fearon, James D & David D Laitin (2003) Ethnicity, insurgency, and civil war. American Political Science Review
97(1): 75-90.

Gibler, Douglas M (2009) International Military Alliances, 1648-2008. Washington DC: CQ Press.

Gibler, Douglas M & Steven V Miller (2014) External territorial threat, state capacity, and civil war. Journal of
Peace Research 51(5): 634-646.

20

https://CRAN.R-project.org/package=modelsummary
https://CRAN.R-project.org/package=WDI
https://CRAN.R-project.org/package=WDI
http://correlatesofwar.org

Gibler, Douglas M & Steven V Miller (Forthcoming) An appraisal of Project Mars and the Divided Armies ar-
gument. International Studies Quarterly (Forthcoming).

Gibler, Douglas M, Steven V Miller & Erin K Little (2016) An analysis of the Militarized Interstate Dispute (MID)
dataset, 1816-2001. International Studies Quarterly 60(4): 719-730.

Gleditsch, Kristian S & Michael D Ward (1999) A revised list of independent states since the Congress of Vienna.
International Interactions 25(4): 393-413.

Gleditsch, Nils Petter, Peter Wallensteen, Mikael Eriksson, Margareta Sollenberg & Havard Strand (2002)
Armed conflict 1946-2001: A new dataset. Journal of Peace Research 39(5): 615-637.

Goemans, Henk E, Kristian Skrede Gleditsch & Giacomo Chiozza (2009) Introducing Archigos: A dataset on
political leaders. Journal of Peace Research 46(2): 269-83.

Hige, Frank (2011) Choice or circumstance? Adjusting measures of foreign policy similarity for chance agree-
ment. Political Analysis 19(3): 287-305.

Horowitz, Michael C & Allan C Stam (2014) How prior military experience influences the future militarized
behavior of leaders. International Organization 68(3): 527-559.

Leeds, Bretty Ashley, Jeffrey M Ritter, Sara McLaughlin Mitchell & Andrew G Long (2002) Alliance treaty obli-
gations and provisions, 1815-1944. International Interactions 28: 237-260.

Lemke, Douglas & William Reed (2001) The relevance of politically relevant dyads. Journal of Conflict Resolution
45(1): 126-144.

Marquez, Xavier (2016) A quick method for extending the Unified Democracy Scores (http://dx.doi.org/10.21
39/ssrn.2753830).

Marshall, Monty G, Ted Robert Gurr & Keith Jaggers (2017) Polity IV project: Political regime characteristics
and transitions, 1800-2016.

Nunn, Nathan & Diego Puga (2012) Ruggedness: The blessing of bad geography in Africa. Review of Economics
and Statistics 94(1): 20-36.

Pemstein, Daniel, Stephen A Meserve & James Melton (2010) Democratic compromise: A latent variable analysis
of ten measures of regime type. Political Analysis 18(4): 426—449.

Poast, Paul (2010) (Mis)using dyadic data to analyze multilateral events. Political Analysis 18(4): 403-425.

Schvitz, Guy, Seraina Riiegger, Luc Girardin, Lars-Erik Cederman, Nils Weidmann & Kristian Skrede Gled-
itsch (2021) Mapping The International System, 1886-2017: The CShapes 2.0 Dataset. Journal of Conflict
Resolution (https://journals.sagepub.com/doi/full/10.1177/00220027211013563).

Singer, David] (1987) Reconstructing the Correlates of War dataset on material capabilities of states, 1816-1985.
International Interactions 14(1): 115-32.

Stinnett, Douglas M, Jaroslav Tir, Philip Schafer, Paul F Diehl & Charles S Gochman (2002) The Correlates of
War Project Direct Contiguity Data, version 3. Conflict Management and Peace Science 19(2): 58-66.

Thompson, William R & David R Dreyer (2012) Handbook of International Rivalries, 1494-2010. Washington DC:
CQ Press.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain
Francois, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn, Thomas Lin Pedersen,

21

http://dx.doi.org/10.2139/ssrn.2753830
http://dx.doi.org/10.2139/ssrn.2753830
https://journals.sagepub.com/doi/full/10.1177/00220027211013563

Evan Miller, Stephan Milton Bache, Kirill Miiller, Jeroen Ooms, David Robinson, Dana Paige Seidel, Vitalie
Spinu, Kohske Takahashi, Davis Vaughan, Claus Wilke, Kara Woo & Hiroaki Yutani (2019) Welcome to the
tidyverse. Journal of Open Source Software 4(43): 1686.

22

	Introduction
	Why {peacesciencer}?
	What is Included in {peacesciencer}
	How to Install {peacesciencer}
	A Tutorial on How to Use {peacesciencer}
	Creating Dyad-Year Data and Adding to Dyad-Year Data in {peacesciencer}
	Creating State-Year Data and Adding to State-Year Data in {peacesciencer}
	Creating Leader-Year Data and Adding to Leader-Year Data in {peacesciencer}

	A Comparison with Other Approaches
	Conclusion
	References

