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Goals for Today

1. Outline a course proposal for an intermediate quant methods class in social science
research.

2. Introduce students to R (with examples)
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About This Course

This is an intermediate course, assuming a previous course that covered:

• Operationalisation of research questions
• Hypothesis testing
• Basic mathematics for social scientists
• Research designs (e.g. experiments, surveys)
• Descriptive statistics
• OLS regression
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What WeWill Cover

1. The R programming language
2. Data visualization, descriptive statistics
3. Fitting/interpreting OLS/logistic models.
4. Fitting/interpreting mixed effects models.
5. Model diagnostics/comparisons.
6. Writing a quantitative research paper.
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Why R, and How?

Why:

• High demand in private sector.
• R is free; everything else costs too much money.
• Rstudio is an excellent IDE (and also free).
• Great community support (e.g. StackOverflow, #rstats on Twitter).
• Unbeatable for data visualization and document prep (through R Markdown).

How:

• Every lecture comes with lab scripts.
• Everything goes on Github.
• Ample support on my course website/blog.
• You’ll learn in part by mimicking.

See more at http://svmiller.com/presentations.
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An Example: British Attitudes about Immigration/Immigrants

1. The data: European Social Survey (2018) for the UK
2. The unit of analysis: the individual respondent in the survey

• Note: I subset the analysis to just those who were born in the UK.

The dependent variable (DV ) is an additive index [0:30] of three prompts:

• Is it generally bad or good for the UK’s economy that immigrants come to live here?

• (imbgeco) [0:10; bad:good]

• Is the UK’s cultural life is generally undermined or enriched by immigrants?

• (imueclt) [0:10; undermined:enriched]

• Is the UK made a worse or a better place to live by immigrants?

• (imwbcnt) [0:10; worse:better]

Higher values = more pro-immigration sentiment.
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Know the Data

The independent variables (IVs):

• Age (in years) [agea]
• Education (in years of education) [eduyrs]
• Gender (1 if respondent is a woman) [female]
• Employment status (1 if respondent is unemployed, but looking for work) [uempla]
• Household income (in deciles) [hinctnta]
• Ideology (on 11-point L-R scale) [lrscale]

7/20



Some Startup R Libraries We’ll Need

library(tidyverse) # for all things workflow
library(stevedata) # for the data (ESS9GB)
library(stevemisc) # helper functions from my toy package

# Let's use {tidyverse} to create another DV
# This will equal 1 if respondent thinks immigrants
# mostly undermine UK culture.

ESS9GB %>%
mutate(imuecltd = ifelse(imueclt < 5, 1, 0)) -> ESS9GB
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What We Can Do in R

We can get summary statistics, by region…

ESS9GB %>%
group_by(region) %>%
summarize(prop_undermine = mean(imuecltd, na.rm=T),

mean_immigsent = mean(immigsent, na.rm=T)) %>%
arrange(-mean_immigsent)

## # A tibble: 12 x 3
## region prop_undermine mean_immigsent
## <chr> <dbl> <dbl>
## 1 Scotland 0.208 18.5
## 2 London 0.241 18.0
## 3 South East (England) 0.272 17.9
## 4 South West (England) 0.266 17.6
## 5 East of England 0.25 17.4
## 6 Northern Ireland 0.3 17.3
## 7 Yorkshire and the Humber 0.280 16.6
## 8 East Midlands (England) 0.310 16.4
## 9 Wales 0.348 15.8
## 10 West Midlands (England) 0.374 15.6
## 11 North West (England) 0.339 15.5
## 12 North East (England) 0.404 14.7

9/20



50°N

52°N

54°N

56°N

58°N

60°N

 8°W  6°W  4°W  2°W  0°  2°E

0.25

0.30

0.35

0.40

The sentiment is highest in North East (40%) and lowest in London (24%) and Scotland (20%).

Percentage of Respondents Thinking Immigrants Undermine Culture, by Region

Data: ?ESS9GB in {stevedata}, by way of the European Social Survey (2018).

10/20



We Can Run a Few Regression Models

# Linear model
M1 <- lm(immigsent ~ agea + female + eduyrs + uempla + hinctnta +

lrscale, data=ESS9GB)
# Logistic model
M2 <- glm(imuecltd ~ agea + female + eduyrs + uempla + hinctnta +

lrscale, data=ESS9GB, family = binomial(link="logit"))
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We Can Even Generate Fancy Regression Tables (in {modelsummary})

Table 1: Simple Models of Immigration Attitudes in the United Kingdom

Pro-Immigration Sentiment Immigrants Undermine Culture

Age -0.002 0.003
(0.010) (0.004)

Female -0.248 -0.130
(0.338) (0.122)

Years of Education 0.488* -0.110*
(0.049) (0.020)

Unemployed -1.102 0.398
(1.204) (0.396)

Household Income (Deciles) 0.338* -0.087*
(0.061) (0.023)

Ideology (L to R) -0.583* 0.120*
(0.088) (0.032)

Intercept 11.655* 0.303
(1.061) (0.398)

Num.Obs. 1454 1469

* p < 0.05
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We Can Conveniently Do Some Model Diagnostics

linloess_plot(M1) # in {stevemisc}
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Comparing the linear smoother with the LOESS smoother is a useful visual diagnostic of the linearity assumption of OLS. It can also point to outliers/influential observations.

Assessing the Linearity Assumption of the OLS Model

Data: ?ESS9GB, in {stevedata}. 13/20



We Can Also Conveniently Run Mixed Effects Models

library(lme4) # everyone's go-to for mixed models

M3 <- lmer(immigsent ~ agea + female + eduyrs + uempla + hinctnta +
lrscale + (1 + lrscale | region), data=ESS9GB)

M4 <- glmer(imuecltd ~ agea + female + eduyrs + uempla + hinctnta +
lrscale + (1 + lrscale | region), data=ESS9GB,

family = binomial(link="logit"))
#^ will want you to rescale your variables, and we'll talk about why you should do this.

14/20



show_ranef(M3, "region", reorder=FALSE) # in {stevemisc}
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These will show which levels of the random effect start higher/lower than the global average and which effects are higher/lower than the global average.

A Caterpillar Plot of Random Effects from a Mixed Effects Model

Data: ?ESS9GB, in {stevedata}.
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They suggest that the most left North East respondents aren't that different from the most right in their sentiment toward immigration. In Scotland: they're very different.

Post-Estimation Simulation of Mixed Models Will Tell You More About What Your Effects 'Look Like'

Data: ?ESS9GB, in {stevedata}. Method: Simulation by multivariate normal distribution of coefficients and variance-covariance matrix.
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We Can Also Write Our Reports in R (R Markdown)

This entire presentation was written in R/R Markdown.
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The Ouput frommyWord Template
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Conclusion

This applied course would teach students many real-world skills.

• Statistical concepts (e.g. logistic regression, mixed models)
• Applied methodological skills (all in R)
• Reproducibility/workflow techniques (all in R, with help from my suite of R packages)

It would also teach/do more than I can cover in this presentation.

• e.g. diagnostics, theory, and other good practices

See my website (http://svmiller.com) for more.
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